Podcasts de história

National Science Foundation - História

National Science Foundation - História

National Science Foundation - agência federal independente no ramo executivo. Criado pelo National Science Foundation Act de 1950, ele promove a pesquisa, o desenvolvimento e a educação em ciência e engenharia. Ele concede bolsas para projetos que demonstram o potencial de contribuir significativamente para o corpo de conhecimento científico ou para a preparação e implementação de uma educação científica eficaz.

. .



Registros da National Science Foundation [NSF]

Estabelecido: Como uma agência independente pelo National Science Foundation Act de 1950 (64 Stat. 149), 10 de maio de 1950, conforme emendado.

Funções: Financia projetos de pesquisa e programas educacionais em ciência e engenharia. Promove o intercâmbio internacional de informações científicas e de engenharia.

Encontrar ajudas: Inventário parcial na edição de microfichas dos Arquivos Nacionais de inventários preliminares.

Registros Relacionados:
Registre cópias de publicações da National Science Foundation em RG 287, Publications of the U.S. Government.
Registros do Escritório de Pesquisa e Desenvolvimento Científico, RG 227.
Registros do Office of Naval Research, RG 298.
Arquivo do Escritório de Ciência e Tecnologia, RG 359.

307.2 Registros Gerais
1949-87

História: Responsabilidade da NSF sob a Lei NSF de 1950 para o desenvolvimento de uma política nacional de ciência e coordenação da pesquisa científica do governo federal transferida para o recém-criado Escritório de Ciência e Tecnologia (OST) pelo Plano de Reorganização nº 2 de 1962, efetivo em 8 de junho de 1962. OST abolido , com funções de Conselheiro Científico do Presidente transferido de Diretor OST para Diretor NSF, pelo Plano de Reorganização nº 1 de 1973, efetivo em 1º de julho de 1973. Escritório de Política de Ciência e Tecnologia (OSTP) estabelecido, e funções de Conselheiro Científico para o O presidente foi transferido do Diretor da NSF para o Diretor do OSTP, pelo Ato de Organização Consultiva de Ciência e Tecnologia Presidencial de 1976 (90 Stat. 459), 11 de maio de 1976.

Registros textuais: Correspondência central, 1949-63. Correspondência de assunto do Diretor da NSF, H. Guyford Stever, em sua qualidade de Conselheiro Científico do Presidente, 1973-76. Correspondência temática do Diretor Associado para Atividades Educacionais e Internacionais, Harry C. Kelly, incluindo correspondência criada quando ele era Diretor Assistente de Pessoal Científico e Educação (1951-59), 1951-62. Arquivos legislativos do conselho geral, 1956-70. Arquivos de casos de contratos, 1966-87.

Registros Relacionados: Arquivo da Assessoria Especial da Presidenta de Ciência e Tecnologia, no RG 359, Arquivo da Assessoria de Ciência e Tecnologia. Entrevista de história oral de Wilson Harwood, Diretor Assistente da NSF (1951-57), na Biblioteca Eisenhower.

307.3 Registros da Divisão de Estudos de Recursos Científicos, Escritório do Diretor Assistente de Pessoal Científico e Educação
1954-70

Registros legíveis por máquina: Registro Nacional de Pessoal Científico e Técnico, 1954-70 (8 conjuntos de dados), com documentação de apoio. Science and Engineers Employment Surveys, 1971 (1 conjunto de dados), com documentação de apoio. Registro Nacional de Engenheiros, 1964-69 (3 conjuntos de dados), com documentação de apoio. Veja também 307.14.

307.4 Registros do Escritório do Diretor, Programas Governamentais e Públicos
1953-81

307.4.1 Registros gerais

Registros textuais: Arquivos de assuntos selecionados, 1953-75.

Imagens em movimento: No gelo, sobre pesquisa na Antártica, 1969 (1 rolo). Aquele navio muito especial, sobre o navio de pesquisa Glomar Challenger, 1973 (1 rolo). Teste de TV para o futuro, documentando os usos de comunicação da televisão, 1979 (1 rolo). Veja também 307.11.

Gravações de vídeo: Ciência nos anos setenta, tratando da pesquisa científica nos anos 1970, 1974 (1 item). Veja também 307.12.

307.4.2 Registros do Escritório do Subdiretor para
Educação científica relacionada ao entendimento público da ciência
(PUS) Programa

Imagens em movimento: Produzido sob o Programa PUS, e consiste em Bem de vida, documentando a exploração oceânica, 1976 (1 bobina) Exploding Universe, explicando a teoria da expansão do universo, 1977 (1 rolo) Espaço Terrestre, cobrindo a magnetosfera e os cinturões de radiação de Van Allen, 1977 (1 bobina) e Quando os rios secam, lidando com alocação de água no sudoeste dos Estados Unidos, 1978 (1 bobina). Veja também 307.11.

Gravações de vídeo: Produzido no âmbito do Programa PUS, para transmissão em televisão comercial e pública, abordando os mais diversos temas científicos e tecnológicos, 1976-81 (17 itens). Veja também 307.12.

Gravações de som: Produzido no âmbito do Programa PUS para transmissão em rádios comerciais e públicas, abordando os mais diversos temas científicos e tecnológicos, 1977-81 (17 itens). Veja também 307.13.

Slides de cores: "O Universo do Dr. Einstein", apresentação de slides produzida no âmbito do Programa PUS, 1979 (199 itens).

307.5 Registros da Divisão de Programas Polares e seus Predecessores
1907-87 (massa 1955-87)

História: Escritório do Ano Geofísico Internacional (IGY), responsável por financiar a participação dos Estados Unidos na exploração internacional da Antártica durante o IGY (1 de julho de 1956 a 31 de dezembro de 1957), estabelecido no Escritório do Diretor da NSF, abril de 1955. Transferido para o Escritório do Diretor Associado for Research, 1957. Redesignado Escritório de Programas Especiais Internacionais, e responsabilizado pelo Programa de Pesquisa Antártica dos EUA (USARP), 4 de agosto de 1958. Funções do USARP transferidas para o recém-criado Escritório de Programas Antárticos (OAP), 26 de maio de 1961. OAP transferido para o recém-criado Escritório do Diretor Associado (Atividades Internacionais), 1º de novembro de 1962. Transferido para o Escritório do Diretor Associado (Pesquisa), a partir de 1º de setembro de 1963, pelo Memorando da Equipe O / D 9, 16 de agosto de 1963. Transferido para o recém-estabelecido Divisão de Ciências Ambientais no Escritório do Diretor Associado (Pesquisa) pelo Memorando da Equipe O / D 65-23, 19 de novembro de 1965. Transferido para o recém-criado Escritório do Diretor Assistente para Programas Nacionais e Internacionais, em vigor em 27 de outubro de 1969, por Staff Memorandum O / D 69-26, 24 de outubro de 1969. Redesignated Office of Polar Programs (OPP), e responsabilizado pela direção dos programas de pesquisa ártica e antártica, 19 de dezembro , 1969. Transferido para a recém-criada Diretoria de Ciências Astronômicas, Atmosféricas, da Terra e do Oceano (AAEOS), com vigência em 30 de setembro de 1975, por Staff Memorandum O / D 75-37, 25 de agosto de 1975. Divisão Redesignada de Programas Polares (DPP ) por Staff Memorandum O / D 76-22, 19 de abril de 1976. Direcção para AAEOS redesignada Direcção de Geociências, 1 de maio de 1986.

307.5.1 Registros do Escritório da Geofísica Internacional
Ano e Escritório de Programas Internacionais Especiais

Registros textuais: Distribuir cópias de atas, planos de programa, estimativas de orçamento e outros registros do Comitê Nacional dos EUA para o Ano Geofísico Internacional, 1955-59. Registros, memorandos e outros registros da Little America Station, Antarctica, 1957-58. Relatórios numerados da situação antártica, emitidos pelo Escritório da USARP, 1959-61.

307.5.2 Registros do Escritório de Programas Antárticos, Escritório de
Programas polares e divisão de programas polares

Registros textuais: Correspondência decimal central e correspondência alfanumérica, 1957-87. Mensagens, principalmente entre Washington, DC, quartel-general e estações antárticas, 1961-87. Arquivos de casos de concessões e contratos, 1959-87. Relatórios da estação de campo da Antártica, 1961-69. Registros relacionados ao navio de pesquisa antártica, USNS Eltanin, 1962-73. Correspondência, arquivos de programa e arquivos de projeto de membros individuais da equipe e escritórios subordinados, 1961-83. Registros retidos pelo representante do escritório central ("Representante USARP") na Antártica, 1966-70 na Nova Zelândia, 1976-79 e a bordo do USNS Eltanin, 1962-72. Traduções publicadas pela NSF de estudos polares soviéticos, 1955-70.

Mapas: Expedição Antártica Britânica, 1907-9 (3 itens). Expedição Antártica Australasiana, 1911-14 (3 itens). Antártica Traverse II, Plateau Station to Queen Maud's Land, 1964 (2 itens). Beardmore Glacier traverse, n.d. (1 item). Antarctic International Communications Network, n.d. (1 item). Cartas de navegação aérea da Antártica, 1958-63 (5 itens). Atividades da USARP, 1960-61 (2 itens). Antarctica, produzido pela American Geographic Society, em conjunto com o IGY, 1957-58 (5 itens), e para a USARP, 1962 (1 item) e 1970 (3 itens). Veja também 307.10.

Fotografias aéreas: Imagens de satélite da região antártica, 1970-73 (1.459 itens). USARP reconhecimento aéreo da geleira Beardmore, 29 de dezembro de 1958 (141 itens). Reconhecimento aéreo, Antártica, 24 de dezembro de 1958 (63 itens) e 8 de janeiro de 1968 (12 itens). Reconhecimento aéreo, Montanhas Bush, Antártica, 1959 (17 itens). Vistas aéreas, local do reator nuclear, McMurdo Sound, Antarctica, 1 de dezembro de 1968 (8 itens). Veja também 307.10.

Imagens em movimento: Filmes coletados ou mantidos pelo Polar Information Service documentando a escolta de Thomas B. Owens, Diretor Assistente da NSF para Programas Nacionais e Internacionais, janeiro de 1971 (1 rolo), um teste de equipamento, 25 de setembro de 1971 (1 rolo) e AIDJEX (Arctic Ice Projeto Dynamics Joint Experiment), 1972 (1 bobina). Filmes do Office of Antarctic Programs relacionados às atividades do USNS Eltanin, 1963 (4 bobinas). Filmes do Programa de Informação e Cooperação Internacional da OAP Poder para o continente sete, WL. (1 bobina) NBC News Presents: Chet Huntley - Através de Drake Passage com USNS Eltanin, WL. (1 bobina) No gelo, WL. (1 bobina) Estação Drift Soviética, 1968 (1 bobina) e testes de documentação de uma câmara de observação sob o gelo, n.d. (1 bobina). Atividades de pesquisa polar, 1961-68 (10 bobinas), 1971-72. Veja também 307.11.

Gravações de vídeo: The Antarctic, n.d. (2 itens).

Gravações de som: Cerimônias na Estação do Pólo Sul em homenagem ao quinquagésimo aniversário das Expedições Scott-Amundsen, 30 de outubro de 1961 (2 bobinas). Gravações do Programa de Informação e Cooperação Internacional da OAP, consistindo em fita de demonstração VLF (Frequência Muito Baixa) da Universidade de Stanford de assobiadores de nariz, assobiadores ruidosos e fenômenos VLF semelhantes, 1958-63 (1 rolo) entrevistas conduzidas pelo jornalista da Marinha dos EUA Craig Duncan em McMurdo Sound Station, Antártica, dos cientistas russos de intercâmbio Peter Astakov (físico da alta atmosfera) e BG Lupatin (geólogo), novembro-dezembro de 1967 (1 rolo) Operação Deep Freeze 66 entrevista pós-temporada do Diretor da USARP Tom O. Jones, 1965-66 (1 rolo) palestras por Louis Quam, cientista-chefe da OAP, 27 de dezembro de 1968 (2 rolos ) e entrevista de William A. Briesmeister, cartógrafo da American Geographical Society, relatando o globo da sociedade e os projetos de mapas da Antártica, sd (1 bobina). Gravação do Serviço de Informação Polar de uma palestra na Estação de Som McMurdo, Antártica, por Laurence M. Gould, cientista-chefe da Primeira Expedição Antártica Byrd (1928-30), presidente do Comitê de Pesquisa Polar (Academia Nacional de Ciências) e membro (1952-62) da NSF, 10 de janeiro de 1977 (2 rolos, 1 cassete). Bicentenário da Antártica, 1976 (1 rolo). Atividades de pesquisa polar, 1958-68 (6 bobinas). Veja também 307.13.

Fotografias: Atividades, equipamentos e instalações da USARP, 1957-70 (996 imagens). Veja também 307.15.

307.6 Registros do Escritório do Diretor Assistente de Ciências Biológicas, Comportamentais e Sociais
1976-81

Registros legíveis por máquina: Amostra de uso público de informações demográficas do Censo dos EUA de 1900, produzida pelo Centro de Estudos em Demografia e Ecologia da Universidade de Washington com uma bolsa da NSF, 1976-81, com documentação de apoio (2 conjuntos de dados). Veja também 307.14.

307.7 Registros do Gabinete do Diretor Adjunto de Assuntos Científicos, Tecnológicos e Internacionais
1974-83

Registros textuais: Registros do Programa Mulheres na Ciência, consistindo em registros administrativos, impressões de computador de 1974-82 de prêmios de bolsas, relatórios de projetos de 1976-83, documentos de 1976-82 resultantes de bolsas da NSF, estudos financiados pela NSF de 1974-82 sobre mulheres e as ciências em anos 1970, 1974-82 e materiais de referência, 1974-82.

Slides de cores: "Opportunities in Science and Engineering", produzido com uma bolsa da NSF pela Scientific Manpower Commission com trilha sonora de apoio e panfleto, 1980 (80 imagens). Veja também 307.15.

307.8 Registros de Comitês, Comissões e Conselhos
1956-75

307.8.1 Registros do Comitê de Cientistas do Presidente e
Engenheiros

História: Estabelecido como Comitê Nacional para o Desenvolvimento de Cientistas e Engenheiros, para encorajar os esforços do setor privado para aumentar a qualidade e a quantidade de cientistas e engenheiros, por anúncio do Presidente Dwight D. Eisenhower, 3 de abril de 1956. Financiado e com assistência administrativa da NSF. Comitê de cientistas e engenheiros do presidente redesignado por um memorando do assistente do presidente Sherman Adams ao presidente do comitê Howard L. Bevis, 7 de maio de 1957. Encerrado em 31 de dezembro de 1958, com funções operacionais transferidas para o Escritório de Mobilização Civil e de Defesa e pesquisa e funções de publicidade transferidas para a NSF.

Registros textuais: Resumos de reuniões, 1956-57. Relatórios intercalares e relatório final, 1956-58. Comunicados à imprensa, 1956-58. Panfletos sobre treinamento e uso de pessoal científico, 1956-58.

Encontrar ajudas: Forrest R. Holdcamper, comp., "Inventário Preliminar dos Registros da Fundação Nacional de Ciência: Registros do Comitê de Cientistas e Engenheiros do Presidente", NC 39 (1963).

Registros Relacionados: Registros operacionais do comitê na Biblioteca Eisenhower.

307.8.2 Registros do Comitê Consultivo para Planejamento e
Assuntos Institucionais

História: Estabelecido por carta patente em 30 de novembro de 1972, de acordo com a Lei do Comitê Consultivo Federal (86 Stat. 770), 6 de outubro de 1972. Terminado em 30 de novembro de 1974.

Registros textuais: Atas, relatórios, correspondência e outros registros do comitê e de seus antecessores, o Comitê Consultivo para Planejamento e o Comitê Consultivo para Relações Institucionais, 1968-75.

307.8.3 Registros da Comissão Conjunta EUA-EUA sobre
Cooperação Científica e Técnica

História: Estabelecido pelo Artigo 7 do Acordo entre o Governo dos Estados Unidos da América e o Governo da União das Repúblicas Socialistas Soviéticas sobre Cooperação nos Campos de Ciência e Tecnologia, com vigência em 24 de maio de 1972 e duração de cinco anos. Continuado como parte da extensão do Acordo em uma base provisória por troca de notas entre o Secretário de Estado dos EUA e a URSS Charge d'Affaires, 24 de maio de 1977. Continuado como parte da renovação do Acordo por mais cinco anos, efetivo em 8 de julho de 1977. Dissolvido após a rescisão do Contrato de acordo com seus próprios termos, em 8 de julho de 1982.

Registros textuais: Registros acumulados pelo Diretor da NSF, H. Guyford Stever, enquanto atuava como presidente dos representantes dos EUA na Comissão Conjunta (1973-75), consistindo em correspondência, atas e registros de grupos de trabalho, 1972-75.

307,9 Registros Relacionados ao Projeto Mohole
1962-68

História: Iniciado em 1958, com bolsa da NSF, pela American Miscellaneous Society, um comitê da National Academy of Sciences-National Research Council, com o objetivo de perfurar a crosta terrestre para obter uma amostra de seu manto. C. Don Woodward nomeado Coordenador do Projeto, e o Comitê Mohole estabelecido, pelo Diretor da NSF Alan T. Waterman, 4 de maio de 1962. Projeto encerrado em 1 de outubro de 1966, por falta de apropriação. As operações do projeto foram concluídas, 1966-68, por meio da apropriação anual regular do NSF.

Registros textuais: Registros administrativos, incluindo correspondência, relatórios de projetos e resumos de reuniões, 1962-68. Registros relativos a subcontratados de projetos, 1963-67. Registros de relações públicas, 1962-66.

Fotografias: Projeto Mohole equipamento de perfuração de seleção de local de perfuração, design de plataforma, desenvolvimento e montagem e tecnologia de perfuração profunda, 1962-66 (230 imagens). Veja também 307.15.

307.10 Registros Textuais (Geral)
1952-55

Atas e registros relacionados do National Science Board, 1952-55.

307.11 Registros Cartográficos (Geral)

Consulte Fotografias aéreas em 307.5.2.

307,12 Imagens em Movimento (Geral)

Consulte 307.4.1, 307.4.2 e 307.5.2.

307.13 Gravações de Vídeo (Geral)

Consulte 307.4.1 e 307.4.2.

307.14 Gravações de som (geral)

Consulte 307.4.2 e 307.5.2.

307.15 Registros legíveis por máquina (geral)

307,16 Imagens estáticas (geral)

Veja as fotografias em 307.5.2 e 307.9.

Veja slides de cores em 307.7.

Nota bibliográfica: Versão web baseada no Guia de Registros Federais dos Arquivos Nacionais dos Estados Unidos. Compilado por Robert B. Matchette et al. Washington, DC: National Archives and Records Administration, 1995.
3 volumes, 2.428 páginas.

Esta versão da Web é atualizada de tempos em tempos para incluir registros processados ​​desde 1995.

Esta página foi revisada pela última vez em 15 de agosto de 2016.
Contate-nos com perguntas ou comentários.


Fundação Nacional de Ciências

Nossos editores irão revisar o que você enviou e determinar se o artigo deve ser revisado.

National Science Foundation (NSF), uma agência independente do governo dos EUA que apóia a pesquisa básica e a educação em uma ampla variedade de ciências e em matemática e engenharia. Inspirado pelos avanços na ciência e tecnologia que ocorreram como resultado da Segunda Guerra Mundial, o NSF foi estabelecido pelo Congresso dos EUA no National Science Foundation Act de 1950. De um orçamento de aproximadamente US $ 8,5 bilhões no início de 2020, forneceu cerca de 11.000 prêmios por ano para cientistas, alunos e professores. Forneceu cerca de um quinto do apoio federal total à pesquisa científica básica em instituições acadêmicas, tornando-se uma importante fonte de financiamento para pesquisa básica nos Estados Unidos.

O NSF concede financiamento para pesquisas em ciências biológicas, geociências, matemática, ciências físicas, ártico e antártico, pesquisas sociais, comportamentais e econômicas, ciências da computação e ciências da informação e engenharia. Também oferece apoio a programas educacionais em matemática e ciências do ensino fundamental até a pós-graduação.

Embora a NSF não opere laboratórios, ela financia e administra o Programa Antártico dos EUA, estabelecido pela NSF em 1959, que realiza pesquisas em várias ciências. A NSF é a agência executiva da Associação de Universidades para Pesquisa em Astronomia, Inc., um consórcio de mais de 40 universidades que conduz pesquisas em astronomia no Observatório Nacional Kitt Peak perto de Tucson, Arizona, e outros observatórios. Em 1994, começou a construção do Observatório Gemini - telescópios gêmeos de 8 metros (26 pés) para locais de visualização ideais no Havaí e no Chile - para os quais a NSF forneceu a maior parte do financiamento, o projeto foi concluído em 2000. Entre outras atividades, a NSF coopera na gestão do Centro Nacional de Pesquisa Atmosférica em Boulder, Colorado, e apóia a cooperação internacional entre pesquisadores americanos e estrangeiros. Entre os resultados mais notáveis ​​das doações da NSF estavam as redes de computadores experimentais que se desenvolveram na Internet.

A NSF também é responsável pela administração da National Medal of Science, apresentada pelo presidente dos Estados Unidos. Os vencedores da medalha estão listados na tabela.


Conteúdo

Após a implantação da Computer Science Network (CSNET), uma rede que fornecia serviços de Internet para departamentos acadêmicos de ciência da computação, em 1981, a US National Science Foundation (NSF) teve como objetivo criar uma rede de pesquisa acadêmica que facilitasse o acesso de pesquisadores aos centros de supercomputação financiado pela NSF nos Estados Unidos. [3]

Em 1985, a NSF começou a financiar a criação de cinco novos centros de supercomputação:

Também em 1985, sob a liderança de Dennis Jennings, a NSF estabeleceu a National Science Foundation Network (NSFNET). A NSFNET era para ser uma rede de pesquisa de propósito geral, um hub para conectar os cinco centros de supercomputação junto com o Centro Nacional de Pesquisa Atmosférica (NCAR) financiado pela NSF entre si e com as redes regionais de pesquisa e educação que por sua vez conectariam o campus redes. Usando essa arquitetura de rede de três camadas, a NSFNET forneceria acesso entre os centros de supercomputador e outros sites através da rede de backbone sem nenhum custo para os centros ou para as redes regionais usando os protocolos TCP / IP abertos inicialmente implantados com sucesso na ARPANET.

Edição de backbone de 56 kbit / s

A NSFNET iniciou suas operações em 1986 usando TCP / IP. Seus seis sites de backbone foram interconectados com links alugados de 56 kbit / s, construídos por um grupo que inclui o Centro Nacional de Aplicações de Supercomputação (NCSA) da Universidade de Illinois, o Centro de Teoria da Universidade Cornell, a Universidade de Delaware e a Rede Merit. Os minicomputadores PDP-11/73 com softwares de roteamento e gerenciamento, chamados Fuzzballs, serviram como roteadores da rede por já implementarem o padrão TCP / IP.

Este backbone original de 56 kbit / s foi supervisionado pelos próprios centros de supercomputadores, com a liderança assumida por Ed Krol na Universidade de Illinois em Urbana – Champaign. Os roteadores Fuzzball PDP-11/73 foram configurados e executados por Hans-Werner Braun na Merit Network [4] e as estatísticas foram coletadas pela Cornell University.

O suporte para usuários finais da NSFNET foi fornecido pelo NSF Network Service Centre (NNSC), localizado na BBN Technologies e incluiu a publicação do softbound "Internet Manager's Phonebook" que listava as informações de contato para todos os nomes de domínio e endereços IP emitidos em 1990. [5 ] Aliás, Ed Krol também foi o autor do Guia do Mochileiro para a Internet para ajudar os usuários da NSFNET a entender suas capacidades. [6] O Guia do Mochileiro se tornou um dos primeiros manuais de ajuda para a Internet.

Conforme as redes regionais cresciam, o backbone NSFNET de 56 kbit / s experimentou aumentos rápidos no tráfego de rede e ficou seriamente congestionado. Em junho de 1987, a NSF emitiu uma nova solicitação para atualizar e expandir a NSFNET. [7]

Edição de backbone de 1,5 Mbit / s (T-1)

Como resultado de um prêmio NSF de novembro de 1987 para a Rede Merit, um consórcio de rede por universidades públicas em Michigan, a rede original de 56 kbit / s foi expandida para incluir 13 nós interconectados a 1,5 Mbit / s (T-1) em julho de 1988 Links adicionais foram adicionados para formar uma rede de múltiplos caminhos, e um nó localizado em Atlanta foi adicionado. Cada um dos nós de backbone era um roteador denominado Nodal Switching System (NSS). Os NSSes eram uma coleção de vários (normalmente nove) sistemas IBM RT PC conectados por uma rede local Token Ring. Os PCs RT rodavam AOS, a versão da IBM do Berkeley UNIX, e eram dedicados a uma tarefa específica de processamento de pacotes. [8]

Sob seu acordo de cooperação com a NSF, a Merit Network foi a organização líder em uma parceria que incluiu IBM, MCI e o estado de Michigan. Merit forneceu coordenação geral do projeto, projeto e engenharia de rede, um Centro de Operações de Rede (NOC) e serviços de informação para auxiliar as redes regionais. A IBM forneceu equipamentos, desenvolvimento de software, instalação, manutenção e suporte de operações. A MCI forneceu os circuitos de dados T-1 a taxas reduzidas. O estado de Michigan forneceu fundos para instalações e pessoal. Eric M. Aupperle, Presidente do Merit, foi o Diretor de Projeto da NSFNET, e Hans-Werner Braun foi o Co-Investigador Principal.

De 1987 a 1994, a Merit organizou uma série de reuniões "Regional-Techs", nas quais a equipe técnica das redes regionais se reunia para discutir questões operacionais de interesse comum entre si e com a equipe de engenharia da Merit.

Durante este período, mas separado de seu suporte para o backbone da NSFNET, a NSF financiou:

  • o Programa de Conexões NSF que ajudou faculdades e universidades a obter ou atualizar conexões para redes regionais
  • redes regionais para obter ou atualizar equipamentos e circuitos de comunicação de dados
  • o NNSC e o sucessor do Network Information Services Manager (também conhecido como InterNIC) help desks de informações [9]
  • o International Connections Manager (ICM), uma tarefa realizada pela Sprint, que incentivou as conexões entre o backbone da NSFNET e as redes internacionais de pesquisa e educação e
  • várias doações ad hoc a organizações como a Federação de Redes de Pesquisa Americanas (FARNET).

A NSFNET se tornou o principal backbone da Internet a partir do verão de 1986, quando a MIDnet, a primeira rede de backbone regional da NSFNET, tornou-se operacional. Em 1988, além dos cinco centros de supercomputador da NSF, a NSFNET incluía conectividade com as redes regionais BARRNet, JVNCNet, Merit / MichNet, MIDnet, NCAR, NorthWestNet, NYSERNet, SESQUINET, SURAnet e Westnet, que por sua vez conectavam cerca de 170 redes adicionais para a NSFNET. [10] Três novos nós foram adicionados como parte da atualização do T-3: NEARNET em Cambridge, Massachusetts Argone National Laboratory fora de Chicago e SURAnet em Atlanta, Georgia. [11] NSFNET conectada a outras redes do governo federal, incluindo a NASA Science Internet, a Energy Science Network (ESnet) e outras. Conexões também foram estabelecidas com redes internacionais de pesquisa e educação começando em 1988 com Canadá, França, [12] [13] Holanda, [14] e então com a NORDUnet (servindo Dinamarca, Finlândia, Islândia, Noruega e Suécia), [15] e depois para muitos outros. [16] [17]

Dois Federal Internet Exchanges (FIXes) foram estabelecidos em junho de 1989 [18] sob os auspícios do Federal Engineering Planning Group (FEPG). FIX East, na Universidade de Maryland em College Park e FIX West, no Centro de Pesquisa Ames da NASA em Mountain View, Califórnia. A existência da NSFNET e dos FIXes permitiu que a ARPANET fosse extinta em meados de 1990. [19]

A partir de agosto de 1990, o backbone da NSFNET oferece suporte ao protocolo de rede sem conexão OSI (CLNP), além do TCP / IP. [20] No entanto, o uso de CLNP permaneceu baixo quando comparado ao TCP / IP.

O tráfego na rede continuou a crescer rapidamente, dobrando a cada sete meses. As projeções indicavam que o backbone do T-1 ficaria sobrecarregado em algum momento de 1990.

Uma tecnologia de roteamento crítica, o Border Gateway Protocol (BGP), originou-se durante este período da história da Internet. O BGP permitiu que os roteadores no backbone da NSFNET diferenciassem as rotas originalmente aprendidas por meio de vários caminhos. Antes do BGP, a interconexão entre a rede IP era inerentemente hierárquica e um planejamento cuidadoso era necessário para evitar loops de roteamento. [21] O BGP transformou a Internet em uma topologia em malha, afastando-se da arquitetura centralizada que a ARPANET enfatizava.

Edição de backbone de 45 Mbit / s (T-3)

Durante 1991, um backbone atualizado, construído com circuitos de transmissão de 45 Mbit / s (T-3), foi implantado para interconectar 16 nós. Os roteadores no backbone atualizado eram servidores IBM RS / 6000 executando AIX UNIX. Os nós centrais foram localizados nas instalações da MCI com nós finais nas redes regionais conectadas e centros de supercomputação. Concluída em novembro de 1991, a transição de T-1 para T-3 não foi tão suave quanto a transição anterior de DDS de 56 kbit / s para T-1 de 1,5 mbit / s, pois demorou mais do que o planejado. Como resultado, às vezes havia congestionamento sério no backbone T-1 sobrecarregado. Após a transição para o T-3, partes do backbone T-1 foram deixadas no local para atuar como backup para o novo backbone T-3.

Em antecipação à atualização do T-3 e à aproximação do fim do acordo cooperativo NSFNET de 5 anos, em setembro de 1990, a Merit, a IBM e a MCI formaram a Advanced Network and Services (ANS), uma nova corporação sem fins lucrativos com uma base mais ampla Conselho de Administração do que a Rede de Mérito com base em Michigan. Sob seu acordo de cooperação com a NSF, Merit permaneceu como responsável final pela operação da NSFNET, mas subcontratou grande parte do trabalho de engenharia e operações para a ANS. Tanto a IBM quanto a MCI firmaram novos compromissos financeiros e outros substanciais para ajudar a apoiar o novo empreendimento. Allan Weis deixou a IBM para se tornar o primeiro presidente e diretor administrativo da ANS. Douglas Van Houweling, ex-presidente do Conselho da Rede de Mérito e vice-reitor de Tecnologia da Informação da Universidade de Michigan, foi presidente do Conselho de diretores da ANS.

O novo backbone T-3 foi denominado ANSNet e forneceu a infraestrutura física usada pela Merit para entregar o Serviço de Backbone NSFNET.

Além dos cinco centros de supercomputador da NSF, a NSFNET forneceu conectividade a onze redes regionais e, por meio dessas redes, a muitas redes regionais e de campus menores. As redes regionais NSFNET foram: [11] [22]

  • BARRNet, a Rede Regional de Pesquisa da Bay Area em Palo Alto, Califórnia, Rede da Federação de Educação e Pesquisa da Califórnia em San Diego, Califórnia, que atende a Califórnia e Nevada
  • CICNet, o Comitê de Rede de Cooperação Institucional por meio da Rede de Mérito em Ann Arbor, Michigan e, posteriormente, como parte da atualização do T-3 via Argonne National Laboratory fora de Chicago, atendendo as Big Ten Universities e a University of Chicago em Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio e Wisconsin
  • JVNCNet, a Rede Nacional de Centros de Supercomputadores John von Neumann em Princeton, New Jersey, conectou as universidades que formavam o Consortium for Scientific Computing, bem como algumas universidades de New Jersey. Havia links de 1,5 Mbit / s (T-1) para a Princeton University, Rutgers University, Massachusetts Institute of Technology, Harvard University, Brown University, University of Pennsylvania, University of Pittsburgh, Yale University, The Institute for Advanced Study, Pennsylvania State University , Rochester Institute of Technology, New York University, The University of Colorado e The University of Arizona. [23] em Ann Arbor, Michigan servindo Michigan, formada em 1966, ainda em operação em 2013 [24] em Lincoln, Nebraska, o primeiro backbone regional da NSFNET a se tornar operacional no verão de 1986, servindo Arkansas, Iowa, Kansas, Missouri , Nebraska, Oklahoma e Dakota do Sul, posteriormente adquirida pela Global Internet, que foi adquirida pela Verio, Inc., a Rede Acadêmica e de Pesquisa de New England em Cambridge, Massachusetts, adicionada como parte da atualização para T-3, servindo Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island e Vermont, fundada no final de 1988, operada pela BBN sob contrato com o MIT, a BBN assumiu a responsabilidade pela NEARNET em 1 de julho de 1993 [25]
  • NorthWestNet em Seattle, Washington, servindo Alasca, Idaho, Montana, Dakota do Norte, Oregon e Washington, fundada em 1987 [26], Rede de Educação e Pesquisa do Estado de Nova York em Ithaca, Nova York
  • SESQUINET, a Rede do Sesquicentenário em Houston, Texas, fundada durante o 150º aniversário do Estado do Texas, a rede Southeastern Universities Research Association em College Park, Maryland e, posteriormente, como parte da atualização T-3 em Atlanta, Geórgia, servindo Alabama, Flórida , Geórgia, Kentucky, Louisiana, Maryland, Mississippi, Carolina do Norte, Carolina do Sul, Tennessee, Virgínia e Virgínia Ocidental, vendido para a BBN em 1994 e
  • Westnet em Salt Lake City, Utah e Boulder, Colorado, servindo Arizona, Colorado, Novo México, Utah e Wyoming.

A lei de apropriações da NSF autorizou a NSF a "promover e apoiar o desenvolvimento e o uso de computadores e outros métodos e tecnologias científicos e de engenharia, principalmente para pesquisa e educação em ciências e engenharia." Isso permitiu que a NSF apoiasse a NSFNET e iniciativas de rede relacionadas, mas apenas na medida em que esse suporte fosse "principalmente para pesquisa e educação em ciências e engenharia. "[27] E isso, por sua vez, foi considerado como significando que o uso da NSFNET para fins comerciais era não permitido.

Editar Política de Uso Aceitável (AUP)

Para garantir que o suporte NSF foi usado de forma adequada, NSF desenvolveu um Política de uso aceitável da NSFNET (AUP) que descreveu em termos gerais os usos da NSFNET que eram e não eram permitidos. [28] A AUP foi revisada várias vezes para torná-la mais clara e permitir o uso mais amplo possível da NSFNET, de acordo com os desejos do Congresso expressos na lei de apropriações.

Uma característica notável da AUP é que ela fala sobre usos aceitáveis ​​da rede que não estão diretamente relacionados a quem ou a que tipo de organização está fazendo esse uso. O uso de organizações com fins lucrativos é aceitável quando é para apoiar a pesquisa e a educação abertas. And some uses such as fundraising, advertising, public relations activities, extensive personal or private use, for-profit consulting, and all illegal activities are never acceptable, even when that use is by a non-profit college, university, K-12 school, or library. And while these AUP provisions seem quite reasonable, in specific cases they often proved difficult to interpret and enforce. NSF did not monitor the content of traffic that was sent over NSFNET or actively police the use of the network. And it did not require Merit or the regional networks to do so. NSF, Merit, and the regional networks did investigate possible cases of inappropriate use, when such use was brought to their attention. [29]

An example may help to illustrate the problem. Is it acceptable for a parent to exchange e-mail with a child enrolled at a college or university, if that exchange uses the NSFNET backbone? It would be acceptable, if the subject of the e-mail was the student's instruction or a research project. Even if the subject was not instruction or research, the e-mail still might be acceptable as private or personal business as long as the use was not extensive. [30]

The prohibition on commercial use of the NSFNET backbone [31] meant that some organizations could not connect to the Internet via regional networks that were connected to the NSFNET backbone, while to be fully connected other organizations (or regional networks on their behalf), including some non-profit research and educational institutions, would need to obtain two connections, one to an NSFNET attached regional network and one to a non-NSFNET attached network provider. In either case the situation was confusing and inefficient. It prevented economies of scale, increased costs, or both. And this slowed the growth of the Internet and its adoption by new classes of users, something no one was happy about.

In 1988, Vint Cerf, then at the Corporation for National Research Initiatives (CNRI), proposed to the Federal Networking Council (FNC) and to MCI to interconnect the commercial MCI Mail system to NSFNET. MCI provided funding and FNC provided permission and in the summer of 1989, this linkage was made. In effect, the FNC permitted experimental use of the NSFNET backbone to carry commercial email traffic into and out of the NSFNET. Other email providers such as Telenet's Telemail, Tymnet's OnTyme and CompuServe also obtained permission to establish experimental gateways for the same purpose at about the same time. The interesting side effect of these links to NSFNET was that the users of the heretofore disconnected commercial email services were able to exchange email with one another via the Internet. Coincidentally, three commercial Internet service providers emerged in the same general time period: AlterNet (built by UUNET), PSINet and CERFnet.

Commercial ISPs, ANS CO+RE, and the CIX Edit

During the period when NSFNET was being established, Internet service providers that allowed commercial traffic began to emerge, such as Alternet, PSINet, CERFNet, and others. The commercial networks in many cases were interconnected to the NSFNET and routed traffic over the NSFNET nominally accordingly to the NSFNET acceptable use policy [32] Additionally, these early commercial networks often directly interconnected with each other as well as, on a limited basis, with some of the regional Internet networks.

In 1991, the Commercial Internet eXchange (CIX, pronounced "kicks") was created by PSINet, UUNET and CERFnet to provide a location at which multiple networks could exchange traffic free from traffic-based settlements and restrictions imposed by an acceptable use policy. [33]

In 1991 a new ISP, ANS CO+RE (commercial plus research), raised concerns and unique questions regarding commercial and non-commercial interoperability policies. ANS CO+RE was the for-profit subsidiary of the non-profit Advanced Network and Services (ANS) that had been created earlier by the NSFNET partners, Merit, IBM, and MCI. [34] ANS CO+RE was created specifically to allow commercial traffic on ANSNet without jeopardizing its parent's non-profit status or violating any tax laws. The NSFNET Backbone Service and ANS CO+RE both used and shared the common ANSNet infrastructure. NSF agreed to allow ANS CO+RE to carry commercial traffic subject to several conditions:

  • that the NSFNET Backbone Service was not diminished
  • that ANS CO+RE recovered at least the average cost of the commercial traffic traversing the network and
  • that any excess revenues recovered above the cost of carrying the commercial traffic would be placed into an infrastructure pool to be distributed by an allocation committee broadly representative of the networking community to enhance and extend national and regional networking infrastructure and support.

For a time ANS CO+RE refused to connect to the CIX and the CIX refused to purchase a connection to ANS CO+RE. In May 1992 Mitch Kapor and Al Weis forged an agreement where ANS would connect to the CIX as a "trial" with the ability to disconnect at a moment's notice and without the need to join the CIX as a member. [35] This compromise resolved things for a time, but later the CIX started to block access from regional networks that had not paid the $10,000 fee to become members of the CIX. [36]

Meanwhile, Congress passed its Scientific and Advanced-Technology Act of 1992 [37] that formally permitted NSF to connect to commercial networks in support of research and education.

An unfortunate state of affairs Edit

The creation of ANS CO+RE and its initial refusal to connect to the CIX was one of the factors that lead to the controversy described later in this article. [38] Other issues had to do with:

  • differences in the cultures of the non-profit research and education community and the for-profit community with ANS trying to be a member of both camps and not being fully accepted by either
  • differences of opinion about the best approach to take to open the Internet to commercial use and to maintain and encourage a fully interconnected Internet and
  • differences of opinion about the correct type and level of involvement in Internet networking initiatives by the public and the private sectors.

For a time this state of affairs kept the networking community as a whole from fully implementing the vision for the Internet as a worldwide network of fully interconnected TCP/IP networks allowing any connected site to communicate with any other connected site. These issues would not be fully resolved until a new network architecture was developed and the NSFNET Backbone Service was turned off in 1995. [11]

The NSFNET Backbone Service was primarily used by academic and educational entities, and was a transitional network bridging the era of the ARPANET and CSNET into the modern Internet of today. With its success, the "federally-funded backbone" model gave way to a vision of commercially operated networks operating together to which the users purchased access. [39]

On April 30, 1995, the NSFNET Backbone Service had been successfully transitioned to a new architecture [40] and the NSFNET backbone was decommissioned. [41] At this point the NSFNET regional backbone networks were still central to the infrastructure of the expanding Internet, and there were still other NSFNET programs, but there was no longer a central NSFNET backbone or network service.

After the transition, network traffic was carried on the NSFNET regional backbone networks and any of several commercial backbone networks, internetMCI, PSINet, SprintLink, ANSNet, and others. Traffic between networks was exchanged at four Network Access Points or NAPs. Competitively established, and initially funded by NSF, the NAPs were located in New York (actually New Jersey), Washington, D.C., Chicago, and San Jose and run by Sprint, MFS Datanet, Ameritech, and Pacific Bell. [42] The NAPs were the forerunners of modern Internet exchange points.

The NSFNET regional backbone networks could connect to any of their newer peer commercial backbone networks or directly to the NAPs, but in either case they would need to pay for their own connection infrastructure. NSF provided some funding for the NAPs and interim funding to help the regional networks make the transition, but did not fund the new commercial backbone networks directly.

To help ensure the stability of the Internet during and immediately after the transition from NSFNET, NSF conducted a solicitation to select a Routing Arbiter (RA) and ultimately made a joint award to the Merit Network and USC's Information Science Institute to act as the RA.

To continue its promotion of advanced networking technology the NSF conducted a solicitation to create a very high-speed Backbone Network Service (vBNS) which, like NSFNET before it, would focus on providing service to the research and education community. MCI won this award and created a 155 Mbit/s (OC3c) and later a 622 Mbit/s (OC12c) and 2.5 Gbit/s (OC48c) ATM network to carry TCP/IP traffic primarily between the supercomputing centers and their users. NSF support [43] was available to organizations that could demonstrate a need for very high speed networking capabilities and wished to connect to the vBNS or to the Abilene Network, the high speed network operated by the University Corporation for Advanced Internet Development (UCAID, aka Internet2). [44]

At the February 1994 regional techs meeting in San Diego, the group revised its charter [45] to include a broader base of network service providers, and subsequently adopted North American Network Operators' Group (NANOG) as its new name. Elise Gerich and Mark Knopper were the founders of NANOG and its first coordinators, followed by Bill Norton, Craig Labovitz, and Susan Harris. [46]

For much of the period from 1987 to 1995, following the opening up of the Internet through NSFNET and in particular after the creation of the for-profit ANS CO+RE in May 1991, some Internet stakeholders [47] were concerned over the effects of privatization and the manner in which ANS, IBM, and MCI received a perceived competitive advantage in leveraging federal research money to gain ground in fields in which other companies allegedly were more competitive. The Cook Report on the Internet, [48] which still exists, evolved as one of its largest critics. Other writers, such as Chetly Zarko, a University of Michigan alumnus and freelance investigative writer, offered their own critiques. [49]

On March 12, 1992 the Subcommittee on Science of the Committee on Science, Space, and Technology, U.S. House of Representatives, held a hearing to review the management of NSFNET. [29] Witnesses at the hearing were asked to focus on the agreement(s) that NSF put in place for the operation of the NSFNET backbone, the foundation's plan for recompetition of those agreements, and to help the subcommittee explore whether the NSF's policies provided a level playing field for network service providers, ensured that the network was responsive to user needs, and provided for effective network management. The subcommittee heard from seven witnesses, asked them a number of questions, and received written statements from all seven as well as from three others. At the end of the hearing, speaking to the two witnesses from NSF, Dr. Nico Habermann, Assistant NSF Director for the Computer and Information Science and Engineering Directorate (CISE), and Dr. Stephen Wolff, Director of NSF's Division of Networking & Communications Research & Infrastructure (DNCRI), Representative Boucher, Chairman of the subcommittee, said:

… I think you should be very proud of what you have accomplished. Even those who have some constructive criticism of the way that the network is presently managed acknowledge at the outset that you have done a terrific job in accomplishing the goal of this NSFNET, and its user-ship is enormously up, its cost to the users has come down, and you certainly have our congratulations for that excellent success.

Subsequently, the subcommittee drafted legislation, becoming law on October 23, 1992, which authorized the National Science Foundation

… to foster and support access by the research and education communities to computer networks which may be used substantially for purposes in addition to research and education in the sciences and engineering, if the additional uses will tend to increase the overall capabilities of the networks to support such research and education activities (that is to say, commercial traffic). [50]

This legislation allowed, but did not require, NSF to repeal or modify its existing NSFNET Acceptable Use Policy (AUP) [28] which restricted network use to activities in support of research and education. [31]

The hearing also led to a request from Rep. Boucher asking the NSF Inspector General to conduct a review of NSF's administration of NSFNET. The NSF Office of the Inspector General released its report on March 23, 1993. [34] The report concluded by:


About the IUCRC Program

The Industry–University Cooperative Research Centers (IUCRC) program accelerates the impact of basic research through close relationships between industry innovators, world-class academic teams, and government leaders. IUCRCs are designed to help corporate partners and government agencies connect directly and efficiently with university researchers to achieve three primary objectives.

  • Conduct high-impact research to meet shared industrial needs in companies of all sizes
  • Enhance U.S. global leadership in driving innovative technology development, and
  • Identify, mentor and develop a diverse high-tech, exceptionally skilled workforce.

The IUCRC program provides a structure for academic researchers to conduct fundamental, pre-competitive research of shared interest to industry and government organizations. These organizations pay membership fees to a consortium so that they can collectively envision and fund research, with at least 90% of member funds allocated to the direct costs of these shared research projects.

Universities, academic researchers, and students benefit from IUCRC participation through the research funding, the establishment and growth of industrial partnerships, and educational and career placement opportunities for students. Industry members benefit by accessing knowledge, facilities, equipment, and intellectual property in a highly cost-efficient model leveraging Center research outcomes in their future proprietary projects interacting in an informal, collaborative way with other private sector and government entities with shared interests and identifying and recruiting talent.

Successful IUCRCs require:

  • A capable research/management team with a strong entrepreneurial mindset
  • Universities, faculty, and students interested in deep engagement with industry
  • A community of industry and government partners seeking pre-competitive, use-inspired research projects.

The National Science Foundation (NSF) provides funding to support Center administrative costs and a governance framework to manage membership, operations, and evaluation. Each IUCRC is expected to grow over time and be independently sustainable by the end of the award period.

Every year, more than 2,000 students engage in industrially-relevant research at Centers nationwide, giving them on the job training for a career in the private sector. About 30% of these student researchers are hired by the member companies.

NSF created the IUCRC program in 1973 to foster long-term partnerships among industry, academe and government. These partnerships support research programs of mutual interest, contribute to the nation's research infrastructure base, promote workforce development, and facilitate technology transfer.

NSF is a federal agency that supports fundamental research and education across all fields of science and engineering, with an $8.1 billion budget in fiscal year 2019.

See the work that our Industry University Cooperative Research Centers are engaging in across all technology and market sectors.


A History of the Broader Impacts Criterion Within the National Science Foundation

The terms broadening participation and broader impacts has been used extensively in science, technology, engineering, and mathematics (STEM) disciplines, especially within STEM funding solicitations and proposals. Although used interchangeably at times, these two terms have their own unique history and definitions. By understanding these differences and similarities, researchers, educators, and administrators can implement and evaluate them more successfully. In this five-part series we’re calling “Broadening Participation and Broader Impacts” we’ll explore the history of these terms, their implementation, and frameworks to evaluate their success.

Broader impacts – the potential to benefit society and contribute to the achievement of specific, desired societal outcomes. & # 8211PAPPG, NSF 19-1

Although most sources of funding, including both federal agencies and private foundations, expect a proposal to discuss the impact, significance or relevance of the proposed work, the National Science Foundation (NSF) is currently the only federal agency in the U.S. that has an explicit broader impacts requirement for their proposals. The following section summarizes the series of events that led NSF to create a broader impacts criterion.

Creation of the Broader Impacts Criterion

The National Science Board (NSB) was established by an Act of Congress in 1950 to serve as the independent governing board of the NSF. In this capacity, the NSB oversees the NSF’s proposal review process. Up until the 1980’s reviewers used two main criteria for evaluating proposals: the intrinsic scientific merit of the proposal, and the qualifications and competence of the principal investigator. To make the distinction between “basic” and “applied” research less rigid, NSB in 1981, adopted a merit-review standard for NSF proposals, which consisted of four criteria: 1) research performance competence of the principal investigator and supporting institution, 2) intrinsic merit of the proposed research, 3) utility or relevance of the research, and 4) effect of the proposed research on the infrastructure of science and engineering.

In 1997, based on recommendations from the Committee on Equal Opportunities in Science and Engineering (CEOSE) which provides advice to the NSF on policies and programs that encourage full participation by women, minorities, and persons with disabilities in STEM, NSB simplified the merit review criteria for proposals from four to two – intellectual merit and broader impacts (NSB/MR-97-05, NSF News Release 97-028). NSF defined broader impacts using five general subcategories: 1) integrating research and education, 2) broadening the participation of underrepresented groups, 3) enhancing the infrastructure for research and/or education, 4) disseminating project results broadly to enhance understanding of science and technology, and 5) describing potential benefits to society at large.

As mentioned in our previous post, the inclusion of an explicit broader impacts criterion in the merit review process was to require proposers to address areas of societal concern within the context of the proposed activity, specifically the area of broadening participation of underrepresented groups within STEM (NSF Important Notice No. 125), a core value adopted by NSF in 1980. Yet, NSF also listed four other general activities that would fulfill the broader impacts criterion and these do not specifically address broadening participation of women, underrepresented minorities, and people with disabilities (NSF 08-062). This effectively dilutes the importance and attention paid to explicit broadening participation activities by NSF proposers and reviewers. In practice, this also creates general confusion around the broader impacts criterion, leading to varied and often conflicting interpretation.

Broader Impacts Criterion in Practice

NSF has a broad portfolio of programs that encompasses ten research areas, each with their own divisions and funding opportunities. Areas of support range from fundamental research, development and enhancement of resources, to education and workforce programs. As a result of these various programs, broader impacts may be intrinsic to the research itself, such as tornado research benefiting people living in high-tornado areas. While in others, the focus may be on education in STEM and both intellectual merit and broader impacts are inherent in the educational work. Individual funding solicitations may also more narrowly define broader impacts activities.

Research team members prepare to drill a hole in the ice as part of a demonstration on sediment core extraction for outreach participants from an Inuit village at Clyde River, Baffin Island. The children were participating in a K-12 outreach program that took place both in and out of the classroom. The outreach was led by Elizabeth Thomas, a graduate student on a National Science Foundation-supported expedition to the Canadian Arctic to study the effects of climate change on the area. Credit: Doug Levere, University at Buffalo

To assess the broader impacts criterion across these varied programs and contexts, the National Alliance for Broader Impacts (NABI) formed in 2014. NABI is a network of individuals and organizations working together to build institutional capacity, advance broader impacts, and demonstrate societal benefits of research. NABI sponsors annual summits with stakeholders to elicit feedback on the broader impacts criterion and recently produced the Broader Impacts Guiding Principles and Questions for National Science Foundation Proposals. In January 2018, NABI compiled data from their own annual summits, findings from NSF’s Office of Integrative Activities two-year study of broader impacts implementation, and NSF’s annual Committee of Visitors report on how the broader impacts criterion is being applied across programs and directorates. Their findings, published in the report, “Current State of Broader Impacts: Advancing Science and Benefiting Society” lists seven common issues across all stakeholder groups:

  1. Broader impacts criterion is unclear.
  2. Random judgments on broader impacts are common in the merit review process.
  3. Relative weighting of intellectual merit and broader impacts is not consistent broader impacts is used by reviewers as a tie-breaker rather than a more substantial and equally weighted criterion.
  4. It is unclear whether broader impacts need to be specifically related to the research aspects of the proposal.
  5. Academic culture does not reward broader impacts activities and dissemination.
  6. Resources to support broader impacts are lacking at the individual, institutional, and national levels.
  7. Universities, governmental representatives, and non-academic partners need better ways to understand and communicate about broader impacts internally and externally to demonstrate research value.

Ironically, the majority of these issues were brought to the attention of the NSB-NSF Staff Merit Review Task Force anterior to implementing the new two-criteria system in 1997 (NSB/MR-97-05). Specifically, a third of respondents during the public comment period brought up the “weighting or threshold” issue. Many expressed concern that adopting the new criteria will lead to a decline in NSF’s standards of excellence with “okay research” (i.e., intellectual merit) being upheld by “excellent relevance” (i.e., broader impacts). Others stated that, for research proposals, intellectual merit is much more important than broader impacts, and should be weighted accordingly. Still others criticized the broader impacts criterion as irrelevant, ambiguous, or poorly worded. To resolve this issue, the Task Force chose to include introductory wording for reviewers, stating that the two criteria need not be weighted equally but should depend upon either additional guidance received from NSF and/or the reviewer’s judgment of the relative importance of the criteria to the proposed work. The Task Force believed this was the best option because it wouldn’t polarize the research and education communities and could be applied very flexibly. Yet, this level of flexibility has resulted in random judgements and inconsistencies being applied to the broader impacts criterion as reported by NABI’s 2018 report referenced above.

NABI is not the only group to raise concerns about NSF’s broader impacts criterion. As stated earlier, under the current rubric proposers do not need to address broadening participation explicitly in order to be compliant. This can lead to the continued exclusion of these groups over long periods of time. Various advisory and oversight bodies, including CEOSE in their Biennial Reports to Congress and participants in NSF-sponsored workshops on broadening participation and broader impacts projects (Clewell & Fortenberry, 2009) have insisted NSF weave broadening participation issues of diversity, equity, and accessibility into each of the five broader impacts categories (Fig. 1).

Figure 1: Graphic representation of leveraging broader impacts which illustrates the flow of potential broadening participation influences (from Addressing Broadening Participation within the NSF Broader Impacts Category, a presentation by Johnson and Anderson based in part on Nelson and Bramwell, April 2008).

Broader Impacts Criterion Going Forward

The various advisory and oversight bodies mentioned above all provide recommendations to NSF concerning the broader impacts criterion, and although their focus is slightly different, their recommendations are not mutually exclusive. For example, COESE and other advisory boards want NSF to leverage the broader impacts criterion to support the agency’s core value of broadening participation. Others, such as NABI are generally focused on creating a cultural shift around the value of broader impact activities, both at the institutional and funding agency level. Collectively, integrating broadening participation issues into each of the five broader impacts subcategories, then incorporating NABI’s recommendations could greatly enhance the broader impacts criterion. Which, if any, of these recommendations NSF will ultimately choose to pursue is unclear.

In the meantime, our third post in the Broadening Participation and Broader Impacts series will summarize successful approaches of funded broadening participation grant programs that can be utilized by broader impacts activities.


Short history of the National Research Foundation

The NRF was established through the National Research Foundation Act (Act No 23 of 1998), following a system-wide review conducted for the Department of Arts, Culture, Science and Technology (DACST). The new entity incorporated the functions of the research funding agencies that were previously servicing various sections of the research community, namely the former Centre for Science Development (CSD) of the Human Sciences Research Council (HSRC) and the former Foundation for Research Development (FRD) that included several National Research Facilities.

As an entity of the Department of Science and Technology (DST), the NRF promotes and supports research through funding, human resource development and the provision of National Research Facilities in all fields of natural and social sciences, humanities and technology. The NRF provides services to the research community especially at Higher Education Institutions (HEIs) and Science Councils, with a view to promote high-level human capital development. The NRF aims to uphold excellence in all its investments in knowledge, people and infrastructure.


Grant Program Highlights

Biological Sciences Program
The mission of the Directorate for Biological Sciences (BIO) is to enable discoveries for understanding life. BIO-supported research advances the frontiers of biological knowledge, increases our understanding of complex systems, and provides a theoretical basis for original research in many other scientific disciplines.

Computer and Information Science and Engineering Program
The Directorate for Computer and Information Science and Engineering (CISE) supports investigator-initiated research in all areas of computer and information science and engineering, fosters broad interdisciplinary collaboration, helps develop and maintain cutting-edge national computing and information infrastructure for research and education, and contributes to the development of a computer and information technology workforce with skills essential for success in the increasingly competitive global market.

Advanced Cyberinfrastructure Program
The Advanced Cyberinfrastructure (ACI) Division supports and coordinates the development, acquisition, and provision of state-of-the-art cyberinfrastructure resources, tools, and services essential to the advancement and transformation of science and engineering. ACI also supports forward-looking research and education to expand the future capabilities of cyberinfrastructure.


Largest Research Grant in UConn History Awarded by National Science Foundation

The largest grant in UConn’s history awarded to the UConn School of Medicine will create a Network for Advanced NMR, a powerful method for analyzing molecules.

Amit Luthra Ph.D., Adam Schuyler Ph.D., Bing Hao Ph.D., Jeff Hoch Ph.D., Irina Bezsonova Ph.D., Dmitry Korzhnev Ph.D., Rebecca Page Ph.D., Sandra Weller Ph.D., Wolfgang Peti Ph.D.,
Mark Maciejewski Ph.D. in front of the Gregory P. Mullen NMR Structural Biology Facility. (Tina Encarnacion/UConn Health photo)

The U.S. National Science Foundation (NSF) has awarded the University of Connecticut a $40 million research grant award, the largest in the University’s history, to UConn School of Medicine for further advancing molecular research nationally for chemistry, materials science, and bioscience.

The image shows a structural model of a protein enzyme bound to its target molecule as part of the process to modulate the signaling. NMR spectroscopy was used to identify the bipartite binding interface between the enzyme and its substrate. The ultra-high field NMRs planned for the NAN will provide even better resolution, speed and sensitivity for similar analyses. (Irina Bezsonova, UConn Health photo)

This NSF grant will establish a new future distributed Network for Advanced NMR (NAN), led and based at UConn’s medical school in collaboration with the University of Georgia and the University of Wisconsin. NMR stands for nuclear magnetic resonance, a powerful method for analyzing molecules.

NAN has three main goals: to provide institutional researchers across the country with open access to the most powerful instruments simplify the discovery and use of NMR resources and foster good data stewardship. It will allow researchers across the U.S. to expand their own biomedical research study findings while also collectively contributing any new scientific insights to the evolving NAN knowledge bases.

Researchers will be able to visit or deliver their samples for analysis using state-of-the-art 1.1 GHz instruments located in Madison, Wisconsin and Athens, Georgia. Both instruments will be linked to a central hub based at UConn Health in Farmington that will assist discovery and scheduling, host knowledge bases with information on optimal experiment design, and securely archive the collected data.

“This new infrastructure, along with the network of scientists to support it, will advance research in biological sciences across the country through innovative experimentation and new biological insights,” says NSF Assistant Director for Biological Sciences Joanne Tornow.

Jeffrey Hoch Ph.D. is the director of the Gregory P. Mullen NMR Structural Biology Facility and a professor in the Department of Molecular Biology and Biophysics at UConn School of Medicine. (Tina Encarnacion/UConn Health photo)

The Network, led by UConn’s Jeffrey C. Hoch, Ph.D. of UConn School of Medicine, is a collaboration with co-principal investigators Art Edison from the University of Georgia, and Katherine Henzler-Wildman and Chad Rienstra from the University of Wisconsin.

“Thanks to NSF’s funding, our new Network will empower researchers to have open access to the latest advanced NMR technology with the necessary computational power to fuel future discoveries,” says Hoch, professor in the Department of Molecular Biology and Biophysics at UConn School of Medicine. “Any researcher nationwide with a laptop will be able to make use of these powerful NMR instruments, methods, and online data bank.”

“Our biggest hope is that NAN and advanced NMR technology’s expanded use will accelerate the identification of future disease biomarkers and ultimately improve the health and outcomes of patients everywhere, through future advances in diagnostics, drug discovery, treatments and especially much-needed cures,” says Hoch, who directs UConn’s Gregory P. Mullen NMR Structural Biology Facility, and is the director of NMRbox, an online NMR software resource platform.

UConn’s state-of-the-art Gregory P. Mullen NMR Structural Biology Facility rapidly processes the structures of large molecules, such as proteins, and their many components. While similar to magnetic resonance imaging (MRI), advanced NMR technology is even higher-powered and more sophisticated for molecular-level studies. The massive NMR spectrometers, machines used to examine structures, are 10 feet tall and weigh several tons. These spectrometers use extremely powerful magnets to examine biomolecular structure by placing the nucleus of an atom in a magnetic field. When exposed to the magnetic field and a pulse of radio-frequency energy, each part of a protein produces a specific frequency of radiation which scientists use to build a picture of the molecule.

“The University of Connecticut is extremely honored to receive recognition of our leading NMR research expertise from the National Science Foundation. We are so proud of Dr. Hoch’s incredible accomplishments. This new Network is a major solution and step toward incredible bioscience advancements for his research team, UConn and beyond,” says Dr. Andrew Agwunobi, Interim President of the University of Connecticut and CEO of UConn Health.

“The historic nature of this grant just goes to show that UConn, UConn Health, and the State of Connecticut are national research powerhouses with exceptional faculty who are academic leaders when it comes to groundbreaking innovation and discovery,” Governor Ned Lamont says.

Kneeling: Mark Maciejewski Ph.D. and Dmitry Korzhnev Ph.D.. Standing: Amit Luthra Ph.D., Adam Schuyler Ph.D., Irina Bezsonova Ph.D., Bing Hao Ph.D., Jeffrey Hoch Ph.D., Sandra Weller Ph.D., Wolfgang Peti Ph.D., and Rebecca Page Ph.D., in UConn’s Gregory P. Mullen NMR Structural Biology Facility. (Tina Encarnacion/UConn Health photo)

“I am pleased to see that Dr. Hoch’s tireless effort and longstanding dedication to the field of NMR is eminently recognized by this amazing research grant award. With it, I know that Jeff and his team will continue to make major contributions,” says Dr. Bruce T. Liang, dean of UConn School of Medicine. “I would also like to thank UConn’s Office of the Vice President of Research and Dr. Radenka Maric whose support and leadership has been instrumental in this major grant award’s success.”


National Science Foundation Funds - Natural History Museum of Utah, U College of Education to develop online learning environment

The National Science Foundation (NSF) has awarded a grant with total funding expected to reach $1.3 million this month to the Natural History Museum of Utah and the College of Education at the University of Utah to develop and evaluate an on-line learning environment to support student learning in the biosciences. This pioneering project, titled Engaging Practices for Inquiry with Collections in Bioscience (EPIC Bioscience), uses authentic research investigations of objects from the museum’s digitized natural history collections to provide students, particularly traditionally underserved populations, with novel access to museum objects and engaging STEM investigations to improve critical thinking skills.

Over the next three years, principal investigators Dr. Kirsten Butcher, Dr. Mitch Power, and Madlyn Runburg will lead an interdisciplinary team of educational researchers, museum educators, and scientists who will combine their expertise to develop curriculum aligned with Next Generation Science Standards, a multi-state effort to create new K-12 science education standards that are "rich in content and practice.” The EPIC project will focus on middle school students 6-8 th grades. The new online learning environment will emphasize a major disciplinary core idea in life sciences -- Ecosystems: Interactions, Energy, and Dynamics. Over the project’s three-year period, more than 1,500 Title I and rural students in Utah will have the opportunity to engage in the development of the EPIC Bioscience investigations. The investigations will eventually be made available to the public.

o EPIC Bioscience project represents the next major step forward in the museum’s Research Quest iniciativa. Through that project, the team learned that there is an extraordinary, but untapped opportunity in using digitized museum collections in education. Their work also demonstrated that data provided by natural history collections and associated research could be used to help students gain a better understanding of complex issues like biodiversity and global warming. Research Quest was developed with funding from the Joseph and Evelyn Rosenblatt Charitable Trust and the I.J. and Jeanné Wagner Charitable Foundation as well as input and advice from a national advisory team, teachers from around the country, experts in education, and others.

“The NSF grant is a wonderful validation of the work we’ve done to-date to engage students and teachers in collections-based research as a means to augment their curriculum with more authentic learning experiences.” said Madlyn Runburg, museum director of education initiatives. “We’re enthusiastically exploring technology-based opportunities to continue our museum’s decades-long work to support K12 students and teachers. Research Quest is the product of that work and now with the addition of EPIC Bioscience, we can expand our catalog of online investigations and better understand how learning is happening with these resources, a primary focus as we look to the future,” said Runburg.

EPIC Bioscience will provide a series of online investigations for middle school students to encourage a deeper understanding of science content and advance their critical thinking skills as they engage in science practices to conduct collections-based research with digitized objects from the museum’s botany, entomology, and vertebrate collections. EPIC Bioscience investigations will also align with the workflow of museum scientists engaged in collections-based research, providing students with activities in data collection, data analysis, interpretation of findings, and communicating results. Mitch Power, museum curator of botany and professor of geography will lead the collections content development. The project will examine questions of how and when interactive features of a digital learning environment can better promote student engagement, meaningful collaborative discourse, and robust learning outcomes as middle school students conduct research using digitized museum collections.”

“Objects have inherent interest for students and provide a concrete context for study, with the result that scientific investigations centered around objects are able to motivate students and connect to their prior knowledge in meaningful ways,” said Kirsten Butcher, U professor of instructional design and educational technology. “Digitized objects from museum collections provide a vast educational resource that has yet to be tapped. EPIC Bioscience is at the forefront of this effort, exploring the potential of digitized museum objects to enhance and improve science learning for middle school students.”

NSF's support of EPIC Bioscience offers learning opportunities for the broader on-line science education community, too. The new curriculum will be evaluated by Next Generation Science Standards Peer Review Panel for alignment with science standards. The investigations will be available online for free use as part of the museum’s suite of Research Quest educational resources. Direct outreach will be made to teachers through national meetings and educator newsletters. Project findings also will inform educational outreach for collections digitization initiatives at other institutions and programs. In addition to conference presentations and white papers, a webinar workshop series will be presented and archived to support other digitization groups in developing and implementing effective educational tools.

About the Natural History Museum of Utah

The Natural History Museum of Utah at the University of Utah is a premier scientific research and cultural institution. It opened to the public in 1969 and moved into a spectacular, award-winning new home in 2011 at the Rio Tinto Center in Salt Lake City. The museum’s 30 scientists oversee active field research programs throughout Utah and elsewhere and help care for natural history collections of more 1.6 million objects. The museum offers innovative exhibitions and educational programs to thousands of residents and visitors each year, including timely and interactive temporary and permanent exhibits, numerous special events and other programs. The museum reaches 450,000 people annually on-site and in communities and classrooms statewide.

About the College of Education

The College of Education at the University of Utah creates a learning environment that fosters discovery and dissemination of knowledge to promote learning, equitable access and enhanced- learning outcomes for all students. The college prepares practitioners and scholars through cutting-edge research and practice, by leading innovation and collaboration and by promoting a culture of theory and data-informed inquiry and action.


Assista o vídeo: What Is Emergence? (Novembro 2021).